NTPsec

pitot.home.arpa

Report generated: Thu Jun 26 04:53:01 2025 UTC
Start Time: Wed Jun 25 04:53:01 2025 UTC
End Time: Thu Jun 26 04:53:01 2025 UTC
Report Period: 1.0 days

Top   Daily Stats   Weekly Stats  

Local Clock Time/Frequency Offsets

local offset plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local Clock Time Offset -30.723 -13.873 -9.611 -0.264 9.442 13.458 14.323 19.053 27.331 5.820 0.139 µs -4.057 10.72
Local Clock Frequency Offset 13.202 13.202 13.206 13.227 13.255 13.267 13.270 0.049 0.065 0.0147 13.228 ppm 7.306e+08 6.58e+11

The time and frequency offsets between the ntpd calculated time and the local system clock. Showing frequency offset (red, in parts per million, scale on right) and the time offset (blue, in μs, scale on left). Quick changes in time offset will lead to larger frequency offsets.

These are fields 3 (time) and 4 (frequency) from the loopstats log file.



Local RMS Time Jitter

local jitter plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local RMS Time Jitter 0.206 0.291 0.335 0.479 1.194 5.602 12.277 0.859 5.311 0.927 0.662 µs 7.233 69.79

The RMS Jitter of the local clock offset. In other words, how fast the local clock offset is changing.

Lower is better. An ideal system would be a horizontal line at 0μs.

RMS jitter is field 5 in the loopstats log file.



Local RMS Frequency Jitter

local stability plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local RMS Frequency Jitter 39.000 46.000 86.000 262.000 750.000 807.000 1,414.000 664.000 761.000 205.115 306.865 10e-12 2.897 8.866

The RMS Frequency Jitter (aka wander) of the local clock's frequency. In other words, how fast the local clock changes frequency.

Lower is better. An ideal clock would be a horizontal line at 0ppm.

RMS Frequency Jitter is field 6 in the loopstats log file.



Local Clock Time Offset Histogram

local offset histogram plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local Clock Offset -30.723 -13.873 -9.611 -0.264 9.442 13.458 14.323 19.053 27.331 5.820 0.139 µs -4.057 10.72

The clock offsets of the local clock as a histogram.

The Local Clock Offset is field 3 from the loopstats log file.



Local Temperatures

local temps plot

Local temperatures. These will be site-specific depending upon what temperature sensors you collect data from. Temperature changes affect the local clock crystal frequency and stability. The math of how temperature changes frequency is complex, and also depends on crystal aging. So there is no easy way to correct for it in software. This is the single most important component of frequency drift.

The Local Temperatures are from field 3 from the tempstats log file.



Local Frequency/Temp

local freq temps plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local Clock Frequency Offset 13.202 13.202 13.206 13.227 13.255 13.267 13.270 0.049 0.065 0.0147 13.228 ppm 7.306e+08 6.58e+11
Temp LM0 40.000 40.000 40.000 41.000 41.000 41.000 41.000 1.000 1.000 0.500 40.502 °C
Temp LM1 59.000 63.000 64.000 73.000 75.000 75.000 76.000 11.000 12.000 3.931 70.948 °C
Temp LM2 52.000 55.000 57.000 66.000 68.000 69.000 69.000 11.000 14.000 4.349 63.871 °C
Temp LM3 59.000 63.000 64.000 73.000 75.000 76.000 76.000 11.000 13.000 4.004 70.878 °C
Temp LM4 56.000 59.000 61.000 69.000 72.000 73.000 73.000 11.000 14.000 4.289 67.446 °C
Temp LM5 52.000 55.000 58.000 66.000 68.000 69.000 69.000 10.000 14.000 3.946 63.937 °C
Temp LM6 56.000 59.000 60.000 68.000 70.000 71.000 71.000 10.000 12.000 4.088 65.857 °C
Temp LM7 57.000 61.000 62.000 71.000 72.000 73.000 74.000 10.000 12.000 3.799 68.463 °C
Temp LM8 59.000 62.000 64.000 72.000 74.000 74.000 75.000 10.000 12.000 3.994 69.592 °C
Temp LM9 59.000 62.000 63.000 70.000 73.000 74.000 74.000 10.000 12.000 3.625 68.861 °C
Temp ZONE0 60.000 64.000 64.000 73.000 75.000 75.000 75.000 11.000 11.000 3.858 70.969 °C

The frequency offsets and temperatures. Showing frequency offset (red, in parts per million, scale on right) and the temperatures.

These are field 4 (frequency) from the loopstats log file, and field 3 from the tempstats log file.



Server Offsets

peer offsets plot

The offset of all refclocks and servers. This can be useful to see if offset changes are happening in a single clock or all clocks together.

Clock Offset is field 5 in the peerstats log file.



Server Offset 2a05:d012:3ca:8100:983c:cae0:5e49:4d81 (paris.time.system76.com)

peer offset 2a05:d012:3ca:8100:983c:cae0:5e49:4d81 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 2a05:d012:3ca:8100:983c:cae0:5e49:4d81 (paris.time.system76.com) -2.152 -1.778 -0.214 0.227 0.668 11.555 22.806 0.882 13.333 2.359 0.498 ms 5.561 54.26

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset NMEA(0)

peer offset NMEA(0) plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset NMEA(0) -30.724 -13.874 -9.612 -0.236 9.443 13.459 14.324 19.055 27.333 5.822 0.165 µs -4.038 10.66

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Jitters

peer jitters plot

The RMS Jitter of all refclocks and servers. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 2a05:d012:3ca:8100:983c:cae0:5e49:4d81 (paris.time.system76.com)

peer jitter 2a05:d012:3ca:8100:983c:cae0:5e49:4d81 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 2a05:d012:3ca:8100:983c:cae0:5e49:4d81 (paris.time.system76.com) 0.059 0.105 0.146 0.242 0.437 6.597 22.901 0.292 6.492 1.518 0.426 ms 8.964 126.2

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter NMEA(0)

peer jitter NMEA(0) plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter NMEA(0) 0.138 0.208 0.290 0.776 3.979 6.851 24.497 3.689 6.643 1.434 1.210 µs 4.938 58.16

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Summary


Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local Clock Frequency Offset 13.202 13.202 13.206 13.227 13.255 13.267 13.270 0.049 0.065 0.0147 13.228 ppm 7.306e+08 6.58e+11
Local Clock Time Offset -30.723 -13.873 -9.611 -0.264 9.442 13.458 14.323 19.053 27.331 5.820 0.139 µs -4.057 10.72
Local RMS Frequency Jitter 39.000 46.000 86.000 262.000 750.000 807.000 1,414.000 664.000 761.000 205.115 306.865 10e-12 2.897 8.866
Local RMS Time Jitter 0.206 0.291 0.335 0.479 1.194 5.602 12.277 0.859 5.311 0.927 0.662 µs 7.233 69.79
Server Jitter 2a05:d012:3ca:8100:983c:cae0:5e49:4d81 (paris.time.system76.com) 0.059 0.105 0.146 0.242 0.437 6.597 22.901 0.292 6.492 1.518 0.426 ms 8.964 126.2
Server Jitter NMEA(0) 0.138 0.208 0.290 0.776 3.979 6.851 24.497 3.689 6.643 1.434 1.210 µs 4.938 58.16
Server Offset 2a05:d012:3ca:8100:983c:cae0:5e49:4d81 (paris.time.system76.com) -2.152 -1.778 -0.214 0.227 0.668 11.555 22.806 0.882 13.333 2.359 0.498 ms 5.561 54.26
Server Offset NMEA(0) -30.724 -13.874 -9.612 -0.236 9.443 13.459 14.324 19.055 27.333 5.822 0.165 µs -4.038 10.66
Temp LM0 40.000 40.000 40.000 41.000 41.000 41.000 41.000 1.000 1.000 0.500 40.502 °C
Temp LM1 59.000 63.000 64.000 73.000 75.000 75.000 76.000 11.000 12.000 3.931 70.948 °C
Temp LM2 52.000 55.000 57.000 66.000 68.000 69.000 69.000 11.000 14.000 4.349 63.871 °C
Temp LM3 59.000 63.000 64.000 73.000 75.000 76.000 76.000 11.000 13.000 4.004 70.878 °C
Temp LM4 56.000 59.000 61.000 69.000 72.000 73.000 73.000 11.000 14.000 4.289 67.446 °C
Temp LM5 52.000 55.000 58.000 66.000 68.000 69.000 69.000 10.000 14.000 3.946 63.937 °C
Temp LM6 56.000 59.000 60.000 68.000 70.000 71.000 71.000 10.000 12.000 4.088 65.857 °C
Temp LM7 57.000 61.000 62.000 71.000 72.000 73.000 74.000 10.000 12.000 3.799 68.463 °C
Temp LM8 59.000 62.000 64.000 72.000 74.000 74.000 75.000 10.000 12.000 3.994 69.592 °C
Temp LM9 59.000 62.000 63.000 70.000 73.000 74.000 74.000 10.000 12.000 3.625 68.861 °C
Temp ZONE0 60.000 64.000 64.000 73.000 75.000 75.000 75.000 11.000 11.000 3.858 70.969 °C
Summary as CSV file


Glossary:

frequency offset:
The difference between the ntpd calculated frequency and the local system clock frequency (usually in parts per million, ppm)
jitter, dispersion:
The short term change in a value. NTP measures Local Time Jitter, Refclock Jitter, and Server Jitter in seconds. Local Frequency Jitter is in ppm or ppb.
kurtosis, Kurt:
The kurtosis of a random variable X is the fourth standardized moment and is a dimension-less ratio. ntpviz uses the Pearson's moment coefficient of kurtosis. A normal distribution has a kurtosis of three. NIST describes a kurtosis over three as "heavy tailed" and one under three as "light tailed".
ms, millisecond:
One thousandth of a second = 0.001 seconds, 1e-3 seconds
mu, mean:
The arithmetic mean: the sum of all the values divided by the number of values. The formula for mu is: "mu = (∑xi) / N". Where xi denotes the data points and N is the number of data points.
ns, nanosecond:
One billionth of a second, also one thousandth of a microsecond, 0.000000001 seconds and 1e-9 seconds.
percentile:
The value below which a given percentage of values fall.
ppb, parts per billion:
Ratio between two values. These following are all the same: 1 ppb, one in one billion, 1/1,000,000,000, 0.000,000,001, 1e-9 and 0.000,000,1%
ppm, parts per million:
Ratio between two values. These following are all the same: 1 ppm, one in one million, 1/1,000,000, 0.000,001, and 0.000,1%
‰, parts per thousand:
Ratio between two values. These following are all the same: 1 ‰. one in one thousand, 1/1,000, 0.001, and 0.1%
refclock:
Reference clock, a local GPS module or other local source of time.
remote clock:
Any clock reached over the network, LAN or WAN. Also called a peer or server.
time offset:
The difference between the ntpd calculated time and the local system clock's time. Also called phase offset.
σ, sigma:
Sigma denotes the standard deviation (SD) and is centered on the arithmetic mean of the data set. The SD is simply the square root of the variance of the data set. Two sigma is simply twice the standard deviation. Three sigma is three times sigma. Smaller is better.
The formula for sigma is: "σ = √[ ∑(xi-mu)^2 / N ]". Where xi denotes the data points and N is the number of data points.
skewness, Skew:
The skewness of a random variable X is the third standardized moment and is a dimension-less ratio. ntpviz uses the Pearson's moment coefficient of skewness. Wikipedia describes it best: "The qualitative interpretation of the skew is complicated and unintuitive."
A normal distribution has a skewness of zero.
upstream clock:
Any server or reference clock used as a source of time.
µs, us, microsecond:
One millionth of a second, also one thousandth of a millisecond, 0.000,001 seconds, and 1e-6 seconds.



This page autogenerated by ntpviz, part of the NTPsec project
html 5    Valid CSS!